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ABSTRACT
BACKGROUND: Attention-deficit/hyperactivity disorder is characterized by neurobiological heterogeneity, possibly
explaining why not all patients benefit from a given treatment. As a means to select the right treatment (stratification),
biomarkers may aid in personalizing treatment prescription, thereby increasing remission rates.
METHODS: The biomarker in this study was developed in a heterogeneous clinical sample (N = 4249) and first applied
to two large transfer datasets, a priori stratifying young males (,18 years) with a higher individual alpha peak fre-
quency (iAPF) to methylphenidate (N = 336) and those with a lower iAPF to multimodal neurofeedback complemented
with sleep coaching (N = 136). Blinded, out-of-sample validations were conducted in two independent samples. In
addition, the association between iAPF and response to guanfacine and atomoxetine was explored.
RESULTS: Retrospective stratification in the transfer datasets resulted in a predicted gain in normalized remission of
17% to 30%. Blinded out-of-sample validations for methylphenidate (n = 41) and multimodal neurofeedback (n = 71)
corroborated these findings, yielding a predicted gain in stratified normalized remission of 36% and 29%,
respectively.
CONCLUSIONS: This study introduces a clinically interpretable and actionable biomarker based on the iAPF
assessed during resting-state electroencephalography. Our findings suggest that acknowledging neurobiological
heterogeneity can inform stratification of patients to their individual best treatment and enhance remission rates.

https://doi.org/10.1016/j.bpsc.2022.02.007
Attention-deficit/hyperactivity disorder (ADHD) is arguably the
most common neurodevelopmental disorder and is charac-
terized by highly heterogeneous impairment profiles and eti-
ology (1,2). Because of this heterogeneity and differential
modes of treatment action (e.g., psychostimulant vs. non-
stimulant medication vs. nonpharmacological treatments),
even the most common interventions, although generally
effective in the treatment of ADHD, only work in part of the
ADHD population, as shown by a large meta-analysis by
Cortese et al. (3) on the efficacy of various commonly pre-
scribed ADHD medications (3,4), with real-life remission rates
of 31% to 57% (reflecting the effectiveness of treatments in
the clinical setting rather than treatment efficacy as assessed
in randomized clinical trials) (5).

Therefore, individualized treatment recommendation
based on biomarkers that predict clinical response to specific
therapeutic interventions is desirable, one example being
specific activity patterns measured by electroencephalog-
raphy (EEG) (6).
ª 2022 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Ideally, treatment should be individually adapted to a given
patient as envisioned in precision psychiatry. However, the
multidimensionality of psychiatric disorders, in contrast to
such clearly delineated problems as tumor tissue, complicates
tailoring treatment to a single person (7). An implementable
intermediate step is treatment stratification, which aims to
select a treatment from a range of effective treatments for a
given disorder, informed by a biomarker [for review, see (8)].

As an example, EEG biomarker studies for treatment pre-
diction in major depressive disorder (MDD) have shown that
specific EEG patterns or abnormalities are differentially asso-
ciated with drug-specific or drug class–specific antidepressant
treatment effects, as well as repetitive transcranial magnetic
stimulation outcome (9–13). Many such studies yielded sex-
specific EEG predictors of MDD treatment response (10,14,15)
and methylphenidate (MPH) response in ADHD (16). Treatment
stratification has already been implemented in the treatment of
different cancer types (17–19) and recently also MDD, where
stratification to different antidepressant medications was
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informed by pretreatment EEG biomarkers, resulting in
improved remission rates relative to treatment as usual (20).

EEG is one of the most cost-effective and easily deployable
methods to measure brain activity and is, thus, suitable for
broad usage in clinical practice. Although several EEG patterns
have been proposed for predicting treatment success in
different mental disorders (7,21), in ADHD most biomarker
studies have focused on diagnostic biomarkers, while studies
investigating prognostic ADHD biomarkers are still scarce
(22,23).

The individual alpha peak frequency (iAPF) is the modal
frequency at which an individual’s alpha activity oscillates and
is known to index brain maturation (24,25). This EEG pattern
has been extensively investigated and shows promise in
predicting outcome to various treatments across different
disorders (11,26). A higher mean frequency or a faster alpha
peak is often associated with better cognitive performance,
possibly reflective of faster information processing in thala-
mocortical pathways (22,23,27,28). Conversely, many mental
disorders, such as Alzheimer’s disease, mild cognitive
impairment (29), psychosis/schizophrenia (30,31), and ADHD
(32), are characterized by a slowed iAPF, potentially reflective
of reduced or slowed information flow between the thalamus
and the cortex (22). Furthermore, slow iAPF has been asso-
ciated with worse clinical outcome to different treatments
such as psychostimulants in ADHD (16,33) and antidepres-
sant medication in MDD (34), whereas it was found to be
related to better clinical outcome to multimodal (MM) EEG
neurofeedback (NFB) treatment in ADHD (35) and sertraline in
MDD (9).

This study therefore investigated whether iAPF is able to
differentially predict clinical outcome for two disparate ADHD
treatments, MPH and a multimodal behavioral intervention
including NFB, sleep hygiene, and coaching (MM-NFB).

Given the opposite implications reported for these treat-
ments, we hypothesized that iAPF can help subdivide a het-
erogeneous population into more homogeneous
subpopulations with relevance to clinical outcome and thus
serve as a biomarker informing treatment stratification be-
tween medications (e.g., MPH) and MM-NFB. While there has
been controversy regarding the specificity of EEG-NFB in the
treatment of ADHD (36,37), this manuscript focuses on EEG-
NFB as part of a broader multimodal treatment including
sleep hygiene and coaching, for which remission rates of 32%
to 57% have been reported (5) and lasting clinical benefit has
been demonstrated (36,38), although this is likely not solely
attributable to EEG-NFB alone. Given the stratification
approach investigated here, being able to prescribe MM-NFB
to people for whom psychostimulants are unlikely to work
would nonetheless be advantageous.

Across the EEG literature, EEG (pre-)processing, EEG
montages, and frequency band definitions vary considerably,
which diminishes comparability and reproducibility that might
at worst result in different findings (39) (see the Supplement
for more details). We therefore first developed Brainmarker-I
in a biomarker discovery phase, where the most precise
iAPF algorithm, i.e., the algorithm yielding the most biologi-
cally plausible iAPF, was determined. This algorithm was
validated against a ground truth scenario, in this case relying
on the well-established finding that iAPF indices brain
Biological Psychiatry: Cognitive Neuroscience and
maturation (24,25). The resulting biomarker was subse-
quently used to predict treatment outcome in the previously
mentioned MPH and MM-NFB datasets based on previous
findings (16,35). These predictions were then corroborated in
blinded, out-of-sample validations in an MPH and an MM-
NFB dataset, which—to our knowledge—had not been
attempted in EEG biomarker studies before. Furthermore, we
tested the biomarker’s capacity to predict remission to two
other pharmacological treatments, guanfacine (GUAN) and
atomoxetine (ATX). To maximize clinical utility of this strati-
fication biomarker, we focused on remission as the primary
outcome, representing the most clinically relevant measure
(40,41).
METHODS AND MATERIALS

Datasets—Biomarker Discovery Phase

Because the goal was to explain variance in clinical data, the
large TD-BRAIN1 (Two Decades–Brainclinics Research
Archive for Insights in Neuroscience) dataset (see Table 1 for
overview), composed of patients with various psychiatric dis-
orders, was used to determine the optimal parameters of iAPF
calculation. The resulting optimized iAPF EEG processing
pipeline was used to develop an age-standardized biomarker
for males and females separately in accordance with previous
reports of sex differences (10,42), which was subsequently
divided into deciles for enhanced interpretability.

The open access TD-BRAIN dataset (n = 1274), a subset of
the data used for the discovery phase, is freely available at
http://www.brainclinics.com/resources (43), with all data
recorded at Research Institute Brainclinics (Brainclinics Foun-
dation, Nijmegen, The Netherlands). In the TD-BRAIN1 data-
set, this was complemented with data from additional clinics
(EPI-PIT clinics [Eindhoven and Tilburg; author JJ], EEG
Resource [Nijmegen; author RB], Neuroscan [Dordrecht;
author PdJ], and neuroCare clinics [Hengelo, Groningen,
Munich, and Sydney; author RvR]), for which the laboratory
setup, including EEG caps, amplifiers, instructions, and other
details, was identical to the iSPOT-A (International Study to
Predict Optimised Treatment in Attention Deficit/Hyperactivity
Disorder) trial (16).

Datasets—Biomarker Transfer Phase

The biomarker determined in the discovery phase was used to
find the best way to stratify patients to MPH (iSPOT-A: n = 257)
(16) and MM-NFB (n = 50) (35) according to the previously
demonstrated directionality of effects (16,35). NFB protocols
were composed of standard protocols such as sensorimotor
rhythm, theta/beta ratio, and slow cortical potential NFB.

This step focused on boys only, owing to a limited sample
size of girls and no robust a priori knowledge regarding
directionality of effect [e.g., Arns et al. (16) only found effects
for boys].

Datasets—Biomarker Validation Phase

For independent out-of-sample replication analysis, we con-
ducted a blinded prediction of remission in the MPH/GUAN
dataset (44) (Table 1) and the ICAN (International Collaborative
Neuroimaging January 2023; 8:52–60 www.sobp.org/BPCNNI 53
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Table 1. Baseline Demographics

Datasets

TD-BRAIN1 iSPOT-A NFB MPH/GUAN ICAN ACTION

Full Datasets

Sample size, N 4249 336 136 141 142 56

Age range, years 6–88 6–18 6–68 7–15 7–11 6–16

Included in Analysis

Sample size, n 4126 184 41 76 71 39

Males, n (%) 2528 (60%) 184 (100%) 41 (100%) 76 (100%) 71 (100%) 39 (100%)

Age, years, mean (SD) 29.3 (18.3) 11.8 (3.1) 11.1 (3.1) 10 (2.0) 8.6 (1.2) 11.5 (2.5)

Treatment NA MPH NFB multimodal
treatmenta

MPH/GUAN NFB/multimodal
treatment

ATX

Full datasets sample size reflects the number of people who were enrolled. Sample size included in analysis reflects the number of people with
complete baseline data who finished treatment (except for TD-BRAIN1, where only baseline data but no clinical data were used). In the TD-BRAIN1
dataset the full age range was used for age standardization, while an age range of 6–18 years was used for the correlation analyses. Sample size of
this age range was 1715 (1253 male); mean age was 11.8 (SD = 3.1) years.

ACTION, Attention Deficit Hyperactivity Disorder Controlled Trial Investigation Of a Non-stimulant; ATX, atomoxetine; GUAN, guanfacine; ICAN,
International Collaborative ADHD Neurofeedback; iSPOT-A, International Study to Predict Optimised Treatment in Attention Deficit/Hyperactivity
Disorder; MPH, methylphenidate; NA, not applicable; NFB, neurofeedback; TD-BRAIN, Two Decades–Brainclinics Research Archive for Insights
in Neuroscience.

aNFB treatment augmented with advice on sleep hygiene and coaching.
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ADHD Neurofeedback) study (36), with accuracy verified by a
third person not involved in the EEG analysis.

In the former trial, subjects were blindly randomized to either
MPH (n = 58) or GUAN (n = 55) treatment. In the ICAN study
(n = 96), subjects were blindly randomized to a multimodal
treatment of sleep and nutrition counseling and either theta/
beta ratio NFB (MM-NFB) or a control treatment (NFB admin-
istered based on a prerecorded EEG to facilitate blinding of all).

Datasets—Biomarker Exploration Phase

In the exploratory phase to test performance of the biomarker
to another commonly prescribed form of pharmacotherapy for
ADHD (i.e., noradrenergic medications), the predictive value of
the biomarker to ATX (n = 47) and GUAN (n = 55) was exam-
ined in the ACTION (Attention Deficit Hyperactivity Disorder
Controlled Trial Investigation Of a Non-stimulant) dataset (45)
and in the MPH/GUAN dataset that had already been used in
the validation phase for MPH replication (44). All participants
(or their parents or caretakers) gave written informed consent
prior to testing.

EEG Data Collection and Preprocessing

All EEGs were recorded in a standardized manner as devel-
oped by Brain Resource Ltd [for more details, see (10)] apart
from the independent MPH/GUAN validation dataset (44).

In short, EEGs were recorded from 26 channels according
to the 10–20 electrode international system (FP1, FP2, F7, F3,
Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4,
T5, P3, Pz, P4, T6, O1, Oz, O2; Quikcap, NuAmps). Mea-
surements consisted of 2-minute eyes-open and 2-minute
eyes-closed recordings. During eyes-open recordings, partic-
ipants were asked to fixate on a dot in the middle of the
computer screen.

Data were recorded with the ground at AFz, and a sampling
rate of 500 Hz and a low-pass filter with an attenuation of 40
dB/decade above 100 Hz was used prior to digitization. Hori-
zontal eye movements were recorded with electrodes placed
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1.5 cm lateral to the outer canthus of each eye. Vertical eye
movements were recorded with electrodes placed 3 mm above
the middle of the left eyebrow and 1.5 cm below the middle of
the left bottom eyelid. Skin resistance was ,10 kU for all
electrodes.

Automatic artifact detection and removal were performed
using a custom-built Python package (46–49) and were in
accordance with de-artifacting as described in (10) and van
Dijk et al. (43), with full code available online (http://www.
brainclinics.com/resources).

For the MPH/GUAN validation dataset (44), eyes-closed
EEGs were recorded from 40 channels (AF3, AF4, AFz, C3,
C4, CPz, Cz, F10, F3, F4, F7, F8, F9, FCz, FP1, FP2, FPz,
FT10, FT7, FT8, FT9, Fz, Iz, O1, O2, Oz, P10, P3, P4, P7, P8,
P9, POz, Pz, T7, T8, TP10, TP7, TP8, TP9) for 5 minutes with a
sampling rate of 256 Hz and referenced to linked ears [for
further details, see (44,50)]. Recordings were subsequently
matched to the other data, i.e., the 40 channels were reduced
to 22 channels matching the TD-BRAIN1 setup (with FC3,
FC4, CP3, and CP4 missing). Artifact rejection for the inde-
pendent validation dataset was performed in BrainVision
Analyzer version 2.2.0 (Brain Products GmbH) by semi-
automatic removal of epochs with signal amplitudes .150 mV.

iAPF Determination

iAPF was determined by computing the fast Fourier transform
of the preprocessed, artifact-free data. Subsequently, each
individual’s iAPF was determined by identifying the highest
peak within the frequency range of 7 to 13 Hz.

Biomarker Discovery Phase

Biomarker discovery a priori focused on males and females
separately owing to previously reported qualitative sex differ-
ences (10,42). In short, data with low-voltage alpha were
identified and excluded from further analysis (for more details,
see the Supplement). To optimize EEG processing, iAPFs
determined with different processing parameters (e.g.,
nuary 2023; 8:52–60 www.sobp.org/BPCNNI
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segment length, reference montage) were correlated with age
(,18 years). The parameter combination with the highest
correlation and retention of subjects was used for further
prospective testing. Subsequently, the data were age- and
sex-standardized and resulting values divided into 10 equal-
sized bins (deciles) to improve interpretability. For more infor-
mation, see the Supplement.

Biomarker Transfer Phase

We first aimed to align previous findings, which differed with
regard to primary outcome measure (response vs. remission)
and subsample (boys aged 6–18 vs. boys aged 12–18) (16,35).
To increase comparability and clinical impact, we focused our
analyses on males in the age range of 6 to 18 years and on
remission, defined as an item mean of #1.00 on the ADHD
Rating Scale-IV, as primary clinical outcome (40).

Biomarker Validation Phase

Finally, the biomarker was prospectively validated on the same
subsample (boys aged 6–18 years) for MPH and MM-NFB
treatment by a blinded prediction of remission status, solely
based on age, sex, and baseline EEG in two independent
datasets.

Biomarker Exploration Phase

Analyses for the exploration phase were similar to those in the
transfer phase but without a guided hypothesis.

Statistics

First, Spearman correlations between the various iAPFs
resulting from different EEG processing combinations and age
in subjects below 18 years (n = 1671) were calculated. To
determine standardized iAPF values independent of age, we
derived nonlinear regression models based on the full TD-
BRAIN1 dataset that most closely fit the given data for each
electrode (Fz, Pz, Oz). Different mathematical models following
the developmental trajectory of the iAPF [such as a Log
Gaussian model, in line with (51)] were contrasted against a
linear model (null hypothesis) and individually adjusted for fe-
males and males and for each site (channel). Divergence
values representing where the individual’s iAPF lies in relation
to other people’s iAPFs were calculated from the resulting
models by subtracting the model-derived average iAPF for
each subject’s age from the person’s actual iAPF. Correlations
between divergence values and age were conducted to
confirm that the age effect had been eliminated from the data.
The resulting divergence values were ranked from low to high
and divided into 10 equal-sized bins (deciles) to improve
interpretability by clinicians.

The final stratification outcome for the transfer phase and
stratification decision for the exploration phase were based on
the positive predictive values (PPVs) at different decile cutoff
points, indicating remission rate within the subsample of pa-
tients that the biomarker would have stratified to the respective
treatment. Because PPVs are dependent on prevalence (here,
observed remission) and remission rates differed between
treatment datasets, we normalized PPVs for better compara-
bility across datasets by dividing the PPV by the observed
remission and subtracting 1.
Biological Psychiatry: Cognitive Neuroscience and
Curve fitting models were developed in GraphPad Prism
version 8.4.0 for MacOS. Spearman correlations were con-
ducted with Python modules “scipy” and “numpy.” All other
statistical analyses were performed in IBM SPSS Statistics for
Macintosh, version 27.0.

RESULTS

Datasets

Table 1 provides a summary of the basic demographic infor-
mation of all datasets.

Biomarker Discovery Phase

Figure 1 visualizes the individual steps of the biomarker
development. In short, a total of 108 algorithm permutations
were tested (Figure 1A). The resulting best permutation (linked-
mastoid reference/eyes closed/5-second segments) was
selected for further prospective testing of the biomarker
(Figure 1B). A linear regression of the resulting age-
standardized divergence values and age yielded a model
with a slope of 0 (b = 0.000), demonstrating that the curve-
fitting procedure successfully removed the age effect seen
previously (e.g., Fz: R2 = 0.000). For an overview of all corre-
lation and secondary analyses, see the Supplement.

Biomarker Transfer Phase: Stratification With
Biomarker Results in Higher Likelihood of
Remission

To account for possible confounding effects of symptom
severity, we first conducted a partial correlation between
baseline ADHD Rating Scale scores and iAPF, controlling for
age, which was not significant (r = 20.064, n = 253, p = .311).

Figure 2 summarizes the outcome of the transfer phase. The
direction of stratification was informed by the previously re-
ported directionality of effects [higher iAPF indicating stratifi-
cation to MPH (16), lower iAPF indicating stratification to MM-
NFB (35)] and was based on the Fz electrode as primary site
based on prior literature (16) (see the Supplement for a post
hoc analysis examining stratification based on Fz and Oz). A
decile cutoff point of 1 to 5 for MM-NFB and 6 to 10 for MPH
was chosen a priori, stratifying approximately half of the pa-
tients to each treatment. To test this a priori decision, PPVs,
indicating remission rates in the patient subsample that would
have been stratified according to our biomarker, were deter-
mined for different decile cutoff points. The chosen cutoff point
of decile 5 indeed led to the highest combined PPV (Table S1).
Therefore, the presented biomarker (Brainmarker-I) was based
on this cutoff point, recommending MM-NFB treatment to
boys with a relatively lower iAPF in the decile range 1 to 5 and
MPH to boys with a relatively higher iAPF in deciles 6 to 10
(Table S2 for additional accuracy measures).

The normalized PPV indicated a predicted increase in
remission rate of 17% compared with the observed remission
rate if patients had received MPH (PPV = 41%) and 30% if
patients had received MM-NFB (PPV = 62%) as treatment
recommendation based on Brainmarker-I.

In a post hoc analysis predicting remission with
Brainmarker-I calculated at the occipital site (Oz), no
improvement could be seen for MPH (normalized
Neuroimaging January 2023; 8:52–60 www.sobp.org/BPCNNI 55
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Figure 1. Biomarker discovery phase. (A) Excerpt
from heatmaps of the total of 108 algorithm permu-
tations (27 depicted) that were tested and selected
based on the highest correlation between age and
individual alpha peak frequency (iAPF) in subjects
,18 years (Spearman correlation r; black digits) and
the highest retention of data (number of subjects N;
white digits). (B, C) Spearman correlation r between
age (6–18 years) and iAPF (B) and number of sub-
jects (C) for each electrode and segment length (2–7
seconds) for condition eyes-closed (EC) averaged
across reference montages (n = 1715). (D, E) Flat-
tening the iAPF-age curve for males (D) and females
(E) separately at electrode location Oz. Upper sub-
plots depict nonstandardized iAPFs and the opti-
mized Log Gaussian model fit. Lower subplots
depict the age-standardized divergence values and a
linear fit through the data. (F) Example of the derived
biomarker (Brainmarker-I) based on the final age-
and sex-standardized scores, with deciles 1–5
yielding a recommendation for neurofeedback (NFB)
treatment and deciles 6–10 yielding a recommen-
dation for methylphenidate (MPH). EO, eyes-open;
LM, linked-mastoid.
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PPV = 11.7%); however, for MM-NFB, the PPV increased to
71.4% (normalized PPV = 151% as compared with 130% in
Fz). Despite this improvement for MM-NFB treatment, Fz
remained the primary stratification site, because prediction for
MPH was only possible with the iAPF recorded at this location.
For the results of stratification based on both Fz and Oz lo-
cations, we direct the reader to the Supplement.
Out-of-Sample Validation Phase: Stratification
Biomarker Predicts Remission in Prospective
Validation Analysis

Next, the biomarker was validated by predicting remission to
MPH and multimodal treatment including MM-NFB (ICAN) in
two independent datasets (36,44), blinded to clinical outcome,
and based solely on the subjects’ age, sex, and baseline iAPF.
Accuracy was verified by a third person not involved in the EEG
56 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Ja
analysis (for MPH, authors GM and SKL; for MM-NFB, author
MA). Results are visualized in Figure 2.

In line with the previous analyses, we normalized PPVs to
improve comparability with the transfer datasets. The
normalized PPV predicted an increase in remission rate of
36% (PPV = 50%) compared with the observed remission rate
if patients had received MPH and 29% (PPV = 29%) if pa-
tients had received the multimodal treatment based on
Brainmarker-I.

Biomarker Exploration Phase

In a final step, we explored the predictive potential of
Brainmarker-I for ATX and GUAN treatment. When testing
different decile ranges for ATX, a cutoff point of #6 resulted in
the highest normalized PPV of 127% (PPV = 40%). This
seems to point to a similar directionality of effect as was
observed for MM-NFB treatment, while using the cutoff point
nuary 2023; 8:52–60 www.sobp.org/BPCNNI
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Figure 2. Predicted remission rate after stratification. Normalized positive
predictive values (PPVs) (in blue) for each treatment group depict predicted
gain in remission if patients had been stratified according to Brainmarker-I.
Light vs. darker green implicates opposite direction for Brainmarker-I, i.e.,
light green indicates decile 6–10 (MPH) and dark green deciles 1–5 (e.g.,
NFB). Note that the predicted remission in the blinded validation is highest.
1iSPOT-A dataset (n = 184); 2NFB dataset (n = 41); 3MPH/GUAN dataset
(MPH: n = 41, GUAN: n = 35); 4ICAN dataset (n = 71). GUAN, guanfacine;
ICAN, International Collaborative ADHD Neurofeedback; iSPOT-A, Interna-
tional Study to Predict Optimised Treatment in Attention Deficit/Hyperac-
tivity Disorder; MPH, methylphenidate; NFB, neurofeedback.
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that was also used for MPH (deciles $ 6) results in a decline in
remission rate (improvement: 28%). However, when the same
decision process as for MM-NFB was applied, i.e., predicting
remission to ATX in individuals with decile scores #5, the
resulting improvement was marginal (PPV = 33%,
improvement = 16%).

For GUAN treatment, a prediction of remission for deciles 6
to 10, the same that was used for MPH prediction, resulted in
the highest PPV (53%) and normalized PPV (126%).

DISCUSSION

In this study, an iAPF algorithm indexing brain maturation was
developed in the biomarker discovery phase in a large clinical
sample. Subsequently, this iAPF was used to develop an iAPF-
based, age- and sex-standardized, treatment stratification
biomarker (Brainmarker-I), which was found to be capable of
differentially informing stratification to MPH and MM-NFB
treatment. The results from the biomarker transfer phase
indicate that a neurobiologically heterogeneous sample of
patients with ADHD can be successfully divided into two more
homogeneous subsamples characterized by a relatively faster
or slower iAPF and a differential response to MPH and MM-
NFB.

Given that both MPH and MM-NFB can be considered
effective interventions for the treatment of ADHD, with remis-
sion rates between 31% and 51% (3,52), using EEG to stratify
to one of these treatments effectively increases predicted
remission rates in the stratified group by 17% to 30%
compared with nonstratified remission rates. Crucially, the
biomarker validation phase substantiated Brainmarker-I
through a blinded out-of-sample prediction of remission in
two external datasets, based solely on age, sex, and baseline
iAPF. Because Brainmarker-I uses only basic demographic
information and resting-state EEG data, it can easily be
Biological Psychiatry: Cognitive Neuroscience and
implemented in clinical practice, using an algorithm that cal-
culates age- and sex-standardized iAPF and decile score and
yields a treatment recommendation.

Most importantly, the directionality of iAPF and its associ-
ation with remission to MPH/GUAN is opposite that of MM-
NFB/ATX. This is imperative for the concept of treatment
stratification, because its aim is to use a biomarker to inform
the best treatment option for each patient, choosing from a
range of effective treatments for that disorder instead of merely
discouraging a particular intervention.

This differential association of iAPF with remission in
response to different treatments might be related to the
branches of the autonomous nervous system (ANS). ADHD
has been associated with hypoarousal of the ANS or hyper-
activity of the parasympathetic nervous system (PSNS) (53,54),
which is supported by the finding that heart rate is generally
lower in children with ADHD, suggestive of higher vagal tone
(33). However, there have also been studies that found an
elevated sympathetic nervous system (SNS) response (42,55)
or a hyperactivation of both PSNS and SNS (56), pointing to a
general ANS imbalance. Similarly, iAPF has been hypothesized
to index fight or flight response, with iAPF acutely speeding up
in the presence of an acute threat, such as pain (57), or slowing
down with chronic stress, such as chronic pain (58,59) or
burnout syndrome (60), possibly reflecting a thalamocortical
gating mechanism, counter-regulating the surplus of pain- or
stress-induced innervation (57,58). Moreover, it has been
shown that people with posttraumatic stress disorder, a dis-
order characterized by an overactive SNS, have a generally
faster iAPF (61). A slower iAPF could thus point to a hyper-
active PSNS, while a faster iAPF could reflect relatively normal
PSNS or increased SNS activation.

While MPH also acts on noradrenaline, its main working
mechanism seems to be an increase of synaptic dopamine by
inhibiting dopamine reuptake through inhibition of the dopa-
mine transporter. It might, thus, be possible that the mecha-
nism of action of MPH is relatively unrelated to ANS
imbalances and instead brings about its effect by acting on a
number of different neurotransmitters simultaneously (62). This
is in line with a recent meta-analysis that reports null effects of
ANS imbalances in ADHD as the most common finding (53),
suggesting a more diverse pathophysiology that goes beyond
ANS abnormalities.

In contrast, ATX, a selective noradrenaline reuptake inhibi-
tor, might normalize PSNS hyperactivity in people with a
slower iAPF by increasing noradrenaline, the major neuro-
transmitter in the SNS. Although the relation with iAPF is un-
clear, one difference in the working mechanism between MPH
and ATX is the location of their dopaminergic and noradren-
ergic effects, with both increasing noradrenaline and dopamine
in the prefrontal cortex but only MPH leading to an increase in
the striatum and nucleus accumbens (63).

Our findings suggest that the effect of GUAN is similar to
that of MPH. While both drugs act on noradrenaline, GUAN, an
a2A adrenergic receptor agonist, inhibits noradrenaline, thereby
dampening sympathetic arousal, which might explain its effect
in people with a higher iAPF (64).

Our biomarker findings thus suggest that there might be
relevant functional differences between ATX, MPH, and GUAN,
requiring further investigation.
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The precise working mechanism of EEG-NFB is unknown at
present. However, speculatively, it has been hypothesized that
sensorimotor rhythm NFB might affect sleep-regulating
mechanisms (65–67). Because ADHD has been associated
with increased daytime sleepiness (68) and sleepiness is
correlated with increased parasympathetic activity (69), EEG-
NFB might work by improving sleep and thereby normalizing
parasympathetic activity. In contrast, Garcia Pimenta et al. (5)
recently emphasized the multimodal nature and importance of
nonspecific effects of this treatment, also evident from the
absence of group effects in the double-blind placebo-
controlled ICAN study (36) that was used here in the validation
phase. Long-term effects of up to 1-year follow-up in the ICAN
study demonstrated clinical benefits on the group level similar
to the MPH arm of the Multimodal Treatment Study of Children
with Attention Deficit and Hyperactivity Disorder (National
Institute of Mental Health) (36). This further suggests that for
the multimodal approach, frequent reinforcement and sleep
coaching are important factors.

While we demonstrated the prognostic value of
Brainmarker-I in two independent and blinded out-of-sample
validations, this study also had some limitations.
Brainmarker-I presently only pertains to males and ages 6 to
18 years. The reason for this is limited sample size for fe-
males in the treatment studies and clear qualitative sex-
specific effects (16), as well as a lack of adult participants
for most of the datasets, which prevented us from investi-
gating stratification for these groups. Findings in females
might be particularly important because they are usually
underrepresented in ADHD research (70), and future
research should specifically focus on this subgroup. Like-
wise, investigating treatment stratification in adults with
ADHD would be valuable.

Because this study examined multiple treatment datasets
from different test locations with different designs, rating
scales, methods, and EEG methodology, testing was not
standardized. However, the fact that the out-of-sample vali-
dation was successful demonstrates the strength of the
developed biomarker in spite of those differences.

Moreover, the transfer MM-NFB sample received EEG-NFB
treatment augmented with sleep hygiene and coaching while
the MM-NFB validation dataset received an MM-NFB or con-
trol treatment and sleep hygiene, coaching, and nutrition
counseling. Findings might, therefore, not be directly compa-
rable to standard EEG-NFB monotherapy (35).

While this study already successfully validated MPH and
MM-NFB prediction by means of Brainmarker-I, a validation
study that prospectively stratifies patients between the in-
terventions based on baseline iAPF would be valuable, similar
to the feasibility study of van der Vinne et al. (20). Because the
relationship between iAPF and MDD treatment outcome has
already been established (9,13,71), a next step will involve
incorporating different pharmacological and non-
pharmacological interventions for MDD making the here-
presented Brainmarker-I a transdiagnostic biomarker.
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